BIOLOGICAL BULLETIN

BIOLOGY OF THE SHAIINEE CAVE SPIDERS. NORMAN E. MCINDO.
General Intronection:

From September 7, 1008, to September 7, 1009, the author held the Speleological Fellowship in Indiana Lniversity with residence at the Thiversity's Case Farm three miles east of Miteladl, Ind The present puper embodies the results of the olsertations during this time on the habits of spiders in caves and in the laboratury:

The work has lieen carried on under the direction of Dr. C. H. Eigenmann, profewor of zoölogy in Indiana Thiversity, (1) whom 1 am indebted for suggentions and the loan of his case literature. I wiht wexpress my thanks to Dr. Charles \%eleny, ansocionte professor of zoülogy, for mony helpful suggestions. I am indebted th Dr. Sle vander Petrunkeviteh for the identification of the specimens; to Dr. A. M. Bamte, for the loan of his entire collection of case spiders. and to Mr. Will Sontt, for part of the map of this series of cases. He survered and mapped the catve from " 1 " $10^{\prime \prime} 37^{\prime \prime}$ or the Lpper Dalwn (eec map, page 321) in the autumn of 1900^{7}; the ather asisted by Mr. Frank Green survesed and mapped the "pper Dalton from " 37 " to " 64 " in October, 1908.

Previotr Work.
Published observations on the habits of cave spiders are limited to a few scattered papers which give lists of species and localities. ${ }^{1}$ The best studies published are those of Packard ${ }^{2}$ and Banta. ${ }^{3}$

[^0]
The Species Studied.

Two species of spiders permanently live in the Mitchell caves. One, Troglohyphantes (W'illibalda) cavernicola Keyserling, a linyphid ${ }^{1}$ is a true cave form; the other, Meta menardi Latreille, is an epeiridid and also lives outside of caves. According to Emerton (1902, 190-) the latter arachnid "lives in caves and similar cool and shady places in various parts of this country and also in Europe."

Banta (1907, 65) reports Erigone infernalis Key. from the Twin Cave at Mitchell, Ind. I have been unable to find it here, but have taken it in Mayfield's Cave at Bloomington, Ind.

Troglohyphantes has been observed in detail in order to get as far as possible the life history of a typical cave spider. The distribution, food and results of the experiments of Meta are given in order to show how an outside form is able to adapt itself to a subterranean life. All notes unless otherwise stated refer to Troglohyphantes. The numbers in quotation marks refer to localities in the caves (see maps, pages 321 and 323).

In Troglohyphantes there are all degrees of differences in coloration, and in the degeneration of the eyes. The abdomen varies in color from black, dark brown, light to white. The cephalothorax varies from dark, pinkish, light to a white color. The most common combination of colors is a light brown abdomen with a pinkish cephalothorax. The adult females range in length (cephalothorax and abdomen) from 2.4 mm . to 3.7 mm ., while the adult males vary from 2.2 mm . to 3 mm .

In the adults the eyes range from eight in number, each with a maximum size of 0.036 mm . in diameter to no external signs of eyes. I have not seen Keyserling's description, but from his figure, which Packard ${ }^{2}$ has copied, the eyes are small, and the front middle ones extremely minute.

Physical Enivironment.

These spiders are found only in total darkness, where the atmosphere is saturated, and in places suitable for the construction of snares. They are never found where the walls are perpendicular with water covering the entire floor; nor are they

[^1]found where the walls and floor are dry: Distance from the entrance does not necessarily limit the distribution if the three necessary conditions are present, nor does scarcity of food limit their distribution to a very great degree.

At " 2 " a few were collected last fall but none has been found since. This is zou feet from the entrance in total darkness. At " 9 " a few more than at " 2 " have been found; at "io" a great many have been taken and "Is" was mest collecting ground. This place is foo feet from the mouth. On several occasions I have gathered two or three dozen individuals here and such wholesale collecting at one place seemed at the time to exhanst the supply, but a month after such a collection had been made, I have been able to duplicate this record. Many have been colleced at "1 1 " and at "19." The latter localit! is the "Big Room," $\mathrm{I},-\mathrm{zoO}$ feet from the entrance. Three were seens at "23" and onlya few were oherved in abranch at " 31 ." This latter place is in total darkness 200 fee from the mouth of the lower Tinin Cave at "32." Not whe has been observed between " 3.3 " and " 36 ." A few have been collected in a branch at " 38 " in the - pper Datton. This location is in total darknes 150 feet from the entrance. A number were baken from branches at "f0" which in $1,02+$ feet from the entrance. This locality was my serond bew collecting kromad, particularly for the cocoons. A few were laten at "5o." One Whe canght in the "Big Remom" at " 57 " atol seroral shater were sem. At "0,3" almost a mile from the entrato of Upper Dalten, three were observed and several wets were among the reck at a "cate-in."

Troglohyplumtes is alon quite abondant in Hamer's Cave one hatf mile wes of thee colles. None wats found nearer than 300 feet from the contrame

This archmid shares as wide a distrilution as the blind beete, Anophthalmus tenus Horn (Blatchley, 'g6). It far outnumbers the latter in individuals, liut is less evenly distributed. By actual count there are wice as many femates as males in all the colfections made from the varions caves.

Metw is found both in twilight and total darkness. In the Shawnee Cave they are gute aboudant from the entrance at " 1 " to " + ." The latter place is over 200 feet from the entrance
in total darkness. Several were seen at " 6 ," 100 feet from the mouth. An adult male was observed on the roof at " 14 "; nine days later, it was seen under a rock on the floor and had constructed a snare. One immature specimen was seen in a branch at " 23 ." At " 30, ," 200 feet from the entrance of Lower Twin, a few live, and at " 32 " and " 33 " they are quite numerous.

May ${ }_{7} 7$, I collected eighteen Metas and placed them on the north wall by a large pile of rocks at "ig" in the "Big Room." August 3, I saw six of them. They had scattered along the wall about 50 feet and among the rock pile. Each had built an orbweb and remains of small diptera were seen in the snares. August $\mathbf{1}_{7}$, after a brief search I saw only three of the eighteen. This absence does not mean that they had died, but that it was impossible to find them.

Locomotion.

This arachnid is very agile and is a good runner. Its long legs and slender body enable it to move from place to place, and to avoid an obstacle with much ease. When not irritated it moves along slowly and gently. When stimulated mechanically, it gives a quick jump, runs and dodges whatever obstacle may be in its way. However, it runs only a few inches and if stimulated a second or third time often drops in an instant and hangs to its web. Sometimes it climbs the web to the place from which it dropped, at other times it lets itself down to the floor and then runs off.

Several were placed on the roof among beads of water and other small obstacles. A pencil was used to stimulate and guide them so that they were obliged to rum up against the obstacles. They use the first pair of legs as feelers. These are kept well in advance of the other legs and head so that they can detect an object in front of them the length of the body. While walking or running slowly, they are able to dodge an object every time. If caused to run swiftly, they run against the object, or if the object be a low bead of water, they run over it and pass on.
Webs and Snare.

This spider usually spins a web wherever it goes. It is impossible to see a single thread in the cave with a carbide bicycle
lamp unless the thread is coated with water. Quite often on the roof in a slit between two strata of rocks, or in crevices in the walls are found collections of webs which are generally coated with water. These webs do not seem to be of any service to the spider after once spun. They however, show how it wanders from place to place. It makes a flat sheet-like snare under which it lives. The snare is slightly curved downward and may. lie in such a proition as (1) form any angle between 0° and 90° with the floor. The threads are fine and the snare so transparent that it is difficult to see unleos it is coated with water. The meshes are so minute that the share turns water. The snare is supported by many fine threads from the sides, the length of these tary atoorting to the surroumdings. When insects tly inte the anare they are taken through it by we spider which is on the under sitce.
sinates are must abundant in the wher parts of the caves where the pasanges are hlocked up with elay. At such plates the cla! banks are more or lean pergendicular and the water has washel out many small eresiors. sometimes large blocks of clay tumble down into a heap). Among theac heapsof day hocks and in stuth erevict an the abouse the shates are very mumerous. In a crevice fise inches wide 1 once saw three shares lailt one abouse the other mot mere thate there inches apart. All thate were parallel with the thoor.

In seseral flates shares are quite conspicuesus in the angle between the fleer and wall. In such pesitions the spiders have better rontes for tranel from one share wanother than in the clay banks.

The third place where smares are found is among the rocks at "cave-ins." The rough cornered rocksappar to form good places for attachment and quite frequently dripping water is present which this species apparently enjoys.

Food.
While in captivity I have fed them small gnats, small flies and the spiderlings of Meta.

In the caves the following observations were made: At "13" While watching a male who was trying to court a female I saw
a white-winged dipteron fly into the snare. In an instant the female seized the insect, then ran back to the male. The latter then ran to the other side of the snare. In a few minutes another white-winged dipteron flew into the snare near the male, and he lost no time in seizing it. Several other times these diptera flew against the snare but failed to be entangled in its meshes. In each case the spiders made a dash for the would-be victim white holding one insect in their mandibles. At an earlier date a spider at this same place was seen eating a white-winged dipteron. On various dates at " f t" one was caught eating a myriopod; one, a small gnat; and several were caught under an old turtle's shell with thysanurans. ${ }^{1}$ At " 19 " two or three were observed in a mouse trap with some cheese. At " 40 " one was caught under an old piece of meat with a small white thysanuran in its mandibles. At " 43 " one was eating a white-winged dipteron, this spider was running on the wall. At " 50 " one was seen in its snare eating a small myriopod.

This spider is usually very peaceful. Neither in the caves nor in captivity have I ever seen them to show the least signs of pugnacity when they came in contact with each other. Nevertheless it appears certain that they at times eat each other. A few times their remains have been found in the snares. A few remains were observed in the glass cases in which they were sometimes kept in the laboratory. Quite a number of times remains were found in the collecting vials the next morning when three or four were left in the same vial over night.

When bits of dirt were thrown into the snares, the spiders ran away quickly. Blind beetles were caught and tossed into the snares. At the instant when the beetles struck the snare, the spiders ran and with a jump seized the victim. Neither the web, nor spider, nor both together were strong enough to hold the beetle. Large flies were also thrown into the snare with the same results. The spiders ahways seized their prey and held on tenaciously until the last second. Small flies and mosquitoes were likewise tossed into the snares. In each case the spider made a quick run and with a jump seized the victims and held

[^2]on so firmly that both prey and spider were torn loose from the web by picking the prey up with forceps.

Not one specimen has even been seen drinking water. Since they always live in a saturated atmosphere all the water required is probally absorbed through the skin.

In captivity I have ferl Meta flies, mosquitoes, gnats and various eperies of other arachnids smaller than themselves. When two or more of them are placed in the same case the largest invarially devours all the others in a short time.

In the caver Metas have been observed at various localities eating grats, mosquitoses, flies and cave crickets. One was seen eating a small moth and another an old dried myriopod.
巨vimmis.

As far ats me observations go, these spiders have me enemies besides themedres. It is very sedem that one can lind the remains of a specimen in the wels and as mentened atowe no case of tighting has ever been witnesed. At "0,3" almont a mile from the entrance the only other inser found wat the blind beefle. Doubteles carefully repeated observations at this locality will prove that other insect- are abo presemt.

Templrattre.

During the last three sears a series of emperature recordst have been taken at "to," or in the "Big Romen." Fior wot the temperature is a follows: 11.5 C. . for January, Felnenary, March, April and May; June 11.7° : July 11.7°; August amd September 12.7°; Oetober 12.2°; Nosember 11.9°; and December 11.7°. Since foot is more abundant and the three necesoary physical comelitions are evidenty suitable at "2," "9" and " 38 ," we can probably attribute the small number of specimens to the uneven temperature. Again, since fond is extremely scarce a half mile from the entrance while the number of specimens is few, perhaps the small number of spiders is due to the scarcity of food. Midway between these two localities food is comparatively plentiful, the temperature is practically even throughout the year, and this combination is probably responsible for the great number of individuals.

[^3]Specimens have been kept in captivity in the laboratory throughout the year. In cold weather they are less active than in warm and are very fretful when the vials become too warm, and often die.

Courtship. ${ }^{1}$

Norember 16 two were seen copulating. In order to see them I got too close and my breath irritated the web. This caused them to separate. After an absence of five minutes I returned and found them together again. A second time they were disturbed. Returning after an absence of fifteen minutes, they were found close together. While copulating, they were lying one under the other with anterior and posterior ends reversed and with the ventral parts of their cephalothorax in contact. November 19, a pair was seen pairing. December 1_{7}, two were observed copulating, these were both under the snare, and the anterior and posterior ends of the cephalothorax were reversed. The dorsal surface of the cephalothorax of the male was pressed against the corresponding ventral part of the female. The male placed his palp on the epigynum once, this lasted only a few seconds, then they parted. December 14 and 22, two couples were seen copulating. Those on the latter date were first seen at $2: 25$ P.M. and then disturbed by breath. At $2: 27$ they were together again after the male had circled once around the female. This pair was on top of the horizontal snare all the time. The male used his palps alternatively three times in three minutes, each time lasted only a few seconds. They were disturbed at 2:30. January 4, two were observed copulating June 7, a male was seen courting a female. Both were under the snare within one and one-lalf inches of each other. They were first seen at $3: 45$ P.M. When the male tried to advance toward the female, she caused him to keep his distance, the result of which caused the male to circle completely around her clockwise in six minutes. Nost of the time she kept the posterior end of her abdomen toward him, while he had his head facing her all the time. At 4:00 I left them and a half hour later upon my return they were still in the same position. They were placed in a vial, taken to the house and were put in a case. In this
'McCook, '93, describes only courtship of outside forms.
case they lived two weeks where they died. This pair like atl others when in captivity had no inclination to mate.

Coconsa and Eggs. ${ }^{1}$

One cocoon was made in a glass case October 4. It contained six eggs. Another wats matle in a case December II. Jamary 21, one with five eggs was constructed in a vial. Other cocoons were mate in vials on the following dates: April 28 ; May 5. 8 , 22, 27 and 31 ; June 3, 25 and 28 ; July 8 and 27; August 6, 19 and 21 .

On the following ditte cocoons with eggs were collected in the caves: October 8 , one with two eggs; one with eight eggs, January 20; January 20 , one comtaining eight newly hatched spiders and one with cenen eggs: another with seven eggs March 2; March 16, two cocons s, we with egge and the other with newly hatched; May 2 , one with four eggs; July 2 , one with four eggs; July 19. at virious lowalition collected seven cocoons, one of which contaned eight eggs, and two others each held four young, at varions localities in I peer Dalton Angust 22 coltected sexell cocouns. Some of thene combatiod young just hatched, and others bome ready to leave the cocomens.

The cocorns in the caven are wathally construeted in secluded places and are difficult tor find unless one examine every litale crevice and leoks mater the ledgen of rocks very carefully. Sometimes they are found bttached to the underside of reck- 1 ing on the flow, but more often under litthe ledgen of rocks and in the atute angles of small erevices.

In color they are now white and are diar-like in shape. The Hat part of the dise is fatened lirmly w the rocks. The average size is 6 mm . in dimeter he 3 mm, in depth, although sometimes a cocoon contaning the minimum momber of egge is at large as one containing the maximm number. I have never been fortunate enough to witness a female making her coowon, but onl examination, a coocon is composed of a more or less firm and closely woven circular base. The eggs are piled into a heap in the middle of this base and then the convex part is spun over them in such a crude and unsubstantial way that one can generally count the eggs through this covering. In detaching the
${ }^{1}$ Montgomery. '06, describes the cocoons and eggs of an allied out-ide form.
cocoon from the rock one must use precaution for fear the eggs fall through the covering.

In number the eggs vary from two to eight with five for an average cocoon. They are transparent whitish in color and are perfect spheres with an average diameter of 0.6 mm . During the embryological stages, they soon take on a yellowish color, become oblong in shape, and the outline of the embryos is discernible through the covering. Some of these embryos assume the shape of the profile of a man's head.

Young.

When hatched they remain for an indefinite period inside the cocoon and when strong enough emerge through a small circular hole.

March 22, three of the seven eggs in a cocoon collected March 2, hatched; April 3, two of these spiderlings were dead, they with the remaining eggs were covered with mold. June 4 , two of the four eggs in a cocoon collected May 24, were hatched, one spiderling was dead and the other alive on this date. Neither one had any eyes. July 29, a cocoon collected July i9, was examined and contained three young. Each one was examined both alive and dead. All eyes, except the anterior middle ones, were discernible. Female no. I39 made a cocoon and laid four eggs May 5. On May 23 all four eggs were hatched, but the young were still inside the cocoon. Each spiderling had all eight eyes except the anterior middle ones. The eyes had a uniform diameter of 0.018 mm . While alive under the microscope their little eyes shone like small electric lights. Their mother had no signs of external eyes. Many other newly hatehed spiderlings were observed both alive and dead. The anterior middle eyes are never discernible. In some, the other six eyes are present and in others no eyes can be seen. All the other eggs laid in the laboratory failed to hatch. Perhaps this was due to uneven temperature.

The young are much thicker-set than the old. The legs are thick and stubby. The cephalothorax and legs are transparent whitish while the abdomen is light cream in color. The latter las a few longitudinal rows of hairs. The length varies from 0.6 to 0.8 mm .

Moulting.

While in eaphivity seven individuals moulted, three of which were found dead shortly dfter the skins were cast off. The deaths were probably partially due to an exees of water in the vials for immediately after the old skins were shed the spiders hay lifeless in the water. The skins were suspended by threads to the upper side of the vials. The moults show that the skin splits on each side of the cephatothoras at the dorsal side of where the legs are attached. Hence. the moulted skin of legs and mouth parth adhere to the ventral half of the moult, and the corneal cuticle betongs to the dorsal half. All the old haire are shed along with the skin, new onse tate the place of the old which causes the color to be perceptibly brighter. The moulted skins of the aidomen were either missing or rolled up into little wads so that one could not tell precisely how they were cato off.

Norktality.

In the cinco ome never finds dead speciments, In captivity mortality is not great. The mont important reguirememt is to place them in as siturated atmonphere as soon ath cought. Tirn thirds of the -preimens were found dead in the collecting viats the following merning when left in the vials without a drop of water wore night. It is impossible to keep them long in anything not air-tisht, hemever areful one is en keep them supplicel with water. The beet device is -mall vials with air-tight cork soppers. In such viak the! may be kept for months without foocl. Whe caught september 10 wasplaced in a small vial containing two drop of water. (1) Jantary 20 more water was added which almost drowned the specimen. ()n January 26 it dicel. During all this time it had had nothing to eat. Another individual wasplaced in a mall val January $\overline{7}$, and died April 19 , due to lack of mointure or food.

In captivity they guite often die soon after moulting. In viats sunshime kills them in a few minutes. The heat from a studemts lamp is also fatal.

Ligut Expleriments.

In the caves one may throw the light from a carbide bicycle lamp on Troglohyphantes for a half hour or more without pro-
ducing any effect. Such is not true with Meta. Just as soon as the light strikes their eyes, they run into the dark. If the light is repeatedly thrown on their eyes, they may be turned in any direction and often can be driven into places where the light cannot reach them.

The following apparatus was used in the laboratory: For the adult Metas, slender io-inch bottles; for the medium sized Metas, 6-inch test-tubes; for the spiderlings of Meta and for Troglohyphantes, small 5 -inch vials. The closed end and the lower half of each vessel were covered with black carbon paper. The open ends were securely closed with air-tight cork stoppers. One specimen with one or two drops of water were placed in each vessel. In a very short time the water forms a thin film of moisture all over the inner surface of the vessel. This saturated the air in both ends equally. The vessels were then placed on an inclined rack by a south window in order to give each an equal amount of light. Occasionally they were rotated so that the light always fell directly upon the spiders' eyes. At various times the carbon paper was transferred to the cork end, thus throwing the specimen into the light or dark as the case may be. Those that were strongly negatively phototropic never lost much time in finding the dark end, regardless of the number of times the carbon paper was changed. Such individuals often pass into the dark in three minutes. The few that were strongly positively phototropic always changed from the dark end to the light end whenever they were thrown into the dark. Some were thus experimented with for thirty days, but experience taught that their actions were reliable for only the first four or five days. Darkness and cloudy weather had much to do with the final results. Time was counted from the period when first placed in the vessel, and each morning when first observed until 6:00 P.M. each day for four consecutive days. When first placed in the vessels and for a short time after the carbon paper was transferred, they were noticed every few minutes, after that irregularly five times every day.

The adult Metas were always in the dark end during clear and clondy weather, and always in the light end when it was dark. The medium sized Mctas were always found in the dark
end in clear weather, one half the time in the dark end during cloudy weather, and usually in the light end when dark. The spiderlings of Meta remained in the dark end one half the time in clear weather, one third the time in the dark end during cloudy. weather and most of the time in the light end when dark.

All eight eyes in the Metas were present and presumally well developed. The anterior middle ones were generally a little smaller than the other and occasionally an eve was found among the others which was alout one half size. In all these experiments forty Metas were uncel.

The following table gives the resulte of the light experiments for Troglohyphantes. On the left is entered the number of the specimen, the locality, the sex, age (whether mature or immature) and the four sets of exes. IME stands for amterior midelle eyes,
 I'S1: for posterior side eyes. All measurememts were mate with a microneter slide inside the two inch ocuhar with two thirds or low objective. When the eyes were sarsely discernible the aneinch ocular was substituted for the two-inch. As a unit of measurement for the eyes one fifty-fifth of a millimeter (0.018 mm .) is cmidosed. The fractional parts of thi- unit are onls approsimate. 'The + 's are uned when the eyes are joined together, if separate - 's are employed. I'stand for pigment speck. The remainder is selfecephatatory

The thirty examplen included in the tathe were seleced, not on a phototeppic basia, hat to represent the various localities. the age, size, degencration of the eyes, and coloration. If another 1. Whe were made from the -pecimens not included in this one, the results would be similar. If a correction could lue made for cloudy weather and for the time oecupied in going into the dark, the total per cent. of to for those in the dark column would be considerably larger than the total per cent. of 51 for those in the light columin. In atl these experiments 225 apecimens have been used and I ampositively certain that the results as given in the table are correct.

Summarizing the following table and other data not included therein we hase the following statements:

Twenty-six per cent. of all the individuals examined had no

Light Experiments for Troglomyphantes cayernicola Key.

[? Abdomen was lost.]
external eyes. Sometimes the eyes are not in their natural position. Often black pigment specks are found where the eyes are absent. The largest eyes are two fifty-fifths millimeter (0.036 mm .) in diameter, being twice as large as those of the newly. hatched, but such individuals are comparatively rare. Hence as a rule, the eyes do not grow larger after lirth, while the specimens more than thribble themselves in size. Neither locality nor size of the specimen determines the degree of degeneration in the eyes, or the shade of coloration. Generally, the lighter colored the individual, the more degenerated the eyes, and vice versa. Specimens totally devoid of eyes always stay in the dark more than fifty per cent. of the time; those with one or more
eyes may stay either in the light or dark more than fifty per cent. of the time, the per cent. depending on the amount of degeneration.

Humidits.

Apparalus.- Glass tubes with one-half-inch bore and twelve inches long were used. The upening and three inches of one end were covered with black carbon paper. The other end was closed with a cotton cloth. A spider and two drops of water wereplaced in the light end of each tube and the tubes were placed in the light the same as in the light experiments. When first phaced in the tubes the specimens wandered from one end to the other. In just a few moments they ceated their wandering and remained within reach of the drops of water. As it was imposible to watch these experiments all the time, gute frequenty the drops of water exaporated before new onces could be added. Some times when the tubes became dry, the spiders were found in the dark end, other times in the light enel. I inder such conditions some were able (1) lise only whe or two days, some four or fise days while whers sursibed ten days. Out of two dozen indiviluals used not one at ans time was ever found in the date end when the light end was wet. Each specimen was examine some had eyes and others were devoid of eyes. Judging from the preceding experiment on light the specimens devoid of eges should hase been found in the dark end at times, providing there was no other factor stronger thatn negative phototropism. Since these specimens remained near the drops of water all the time instead of going into the dark, we conclute that homidit! is a stronger factor than negatise phototropism.

The same experiments were prosecutal with the spiderlings and medium sized specimens of Meta. At times the were found in the dark end when the light end was wet, therefore probably humidity with them is not greater than negative phototropism.

Change of iftmidity.

Apparatus. The same tules as used in the preceding experiments for homidity, alsen a hygrometer was employed. A specimen was placed in each tube and was observed several times each day: The following results show the relative humidity and the number of hours and minutes various individuals lived.

No. of Specimens.	Relative Humidity.	Hrs.	Min.
4	$38-36$	3	I5
2	$70-66-59$	5	30
I	$38-36-44$	8	I5
4	$63-93$	8	I5
I	$95-82-84-88-92-78$	23	35
I	$8 \mathrm{I}-60-76-73-100-75-89$	3 I	45
II	IOO- $65-55-60-72-66-60$	33	45

On various dates at the entrance and at the different localities in the caves the relative humidity was recorded. At the entrance it varied considerably on different days, but in the caves, the hygrometer always stood at 100 (saturation point).

These arachnids always live in a saturated atmosphere and it is impossible for them to survive long outside the caves where the variation in the degree of humidity is great. As a general rule the higher the relative humidity (with but a gradual and small amount of variability), the longer they live. Since the above experiments were prosecuted from May 18 to June 8, when the change in temperature was not such as to materially affect these spiders, we must attribute their deaths to the hygrometric conditions.

Sumarary.

1. Troglohyphantes cavernicola Keys. is found everywhere in these caves, where the three following necessary conditions exist-iotal darkness, a saturated atmosphere, and a suitable place for the construction of snares.
2. The first pair of legs are used as tactile organs.
3. All small winged insects, thysanurans and small myriopods serve as food. Scarcity of food does not entirely limit their distribution.
4. They have no known enemies other than themselves.
5. While temperature outside the caves does not materially affect the adult spiders themselves, it is probable that to the even temperature at localities between 600 and $\mathrm{I}, 700$ feet from the entrance is due the great number of specimens found at this place.
6. Courtship is similar to that of some outside forms.
7. Cocooning is rudimentary. The eggs are few and comparatively large.
8. The young are white and are thicker set than the adults. Some are hatched with eves, while others are entirely blind.
9. Moulting is comparatively rare and is often fatal. There are all shades from white to black in coloration.
10. In cize the eyen vary from a small pigment speck to 0.036 millimeter in diameter. As a rule, after birth the eyes cease to grow while the specimens more than thribble themselves in size. Twenty-six per cent. of all the individuals are entirely. devoid of eyes.
11. The degree of degemeration in the eye and the shade of coloration are mot determined by either locality or size of the specimen.
12. The lighter colvered the -pecimen the more degenerated the e.jes.
13. The mure depemerated the ere the greater the negative photutropism, alal tio. worad.
1.4. Humidity is a -tronger lactor than negative photropism in determining the lextion of apecimens in the experimental tubes.

15 Change of relative hamidity is fatat in a few hours

1111R111R1..
Banks. Nathan

Banta. A. M

 $5 \varphi-6,7$.
Blaichley. W S

Eigenmann, C. H.
'09 The Blisel Vertebrate of :wnee Americon Cave. P'ublication Nio. 104.

Emerton. J. H

'oz The Comanom spiders of the lanted states, Cinn and Co., Boven.

Emerton, J. H.

'75 Notes on the Spiders trom Kentucky. Virginia, and Intiana. Packard's Cave l̈ama of North America. Mem, Nat. Acad. Sci., IV.. 18s8, 57-58.

McCook. H. C.

'93 American Spiders and their Spinning Work. Phil. Acad. of sci.. 3 vols.
Montgomery. Thom. H., Jr.
'o6 The ()wiposition, Cocooning and Hathing of an Aranead, Theridium Tepidarioruı C. Koch. Biol. Bull., Vol. Xil.I.. No. 1, Dec., 1906.

Explanation of Map.

Shawnee Cave (the outlet). Sec. I., No. I.
Closed chamber caused by collapse of roof at Sec. I., Nos. 2-3.
Cascade. Sec. I., No. 6.
Double passage. Sec. I., Nos. 7-8.
Old cross cave. Sec. I., Nos. 9-Io.
New passages. Sec. I., Nos. I-8 and II-I3.
Opening in roof leading to upper older levels of cave. Sec. I., No. 14.
"Big Room." Sec. I., Nos. I5, I6, 17, 18, 19, 20, $21,22$.
"Fallen Rock." Sec. I., No. 3I.
Lower Twin Cave. Sec. I., No. 32.
Upper Twin Cave. Sec. I., No. 33 .
Roof too low for passage of boat. Sec. I., No. 34.
Deepest water in cave, 10 feet 4 inches. Sec. I., No. 35 .
Lower Dalton Cave. Sec. I., No. 36.
Upper Dalton Cave. Sec. I., No. 37.

Fu: 1. Map of Shawnee Cave, section 1 , from Shawnee to Lower Dalton. Length 4.453 feet. sicale 200 feet to the inch.

Explanation of Map.
Upper Dalton Care. Sec. II., No. 37.
"Cross bedding" in limestone. Sec. II., Nos. 46-47.
"Old passages." Sec. II., Nos. 56-57.
Obstruction past which boat cannot be taken. Sec. II., No. 63.
End of exploration. Sec. II., No. 64.

[^0]: ${ }^{1}$ Banks ('06) and Blatchley ('96) give lists of Arachnids from Indiana Caves.
 2.Mem. Nol. Icud. Sii., IV., isss.

 3"Fauna of Mayfield's Cave." 1907.

[^1]: ${ }^{1}$ Banks, '06, classification.
 ${ }^{2}$ I 888 , Plate XV., Fig. 32.

[^2]: ${ }^{1}$ Here as elsewhere used in broad sense to include both Thysanura and Collembola.

[^3]: 'Eipenmann, 'og.

